Tracking saddle-to-scission dynamics using N/Z in projectile breakup reactions

SYLVIE HUDAN

April 1, 2012
Dynamical Breakup

Observation of strongly aligned decay in mid-peripheral collisions at intermediate energies with:

* Large yield
* Large relative velocity relative to fission

Montoya et al., PRL73, 3070 (1994); Bocage et al., NPA676, 391 (2000)
Davin et al., PRC65, 064614 (2002); Colin et al., PRC67, 064603 (2003)
McIntosh et al., PRC81, 034603 (2010)

From Colin et al.
Dynamical Breakup

Observation of strongly aligned decay in mid-peripheral collisions at intermediate energies with:

* Large yield
* Large relative velocity relative to fission

Montoya et al., PRL73, 3070 (1994); Bocage et al., NPA676, 391 (2000)
Davin et al., PRC65, 064614 (2002); Colin et al., PRC67, 064603 (2003)
McIntosh et al., PRC81, 034603 (2010)

From Colin et al.

⇒ Transiently deformed nuclei
⇒ Early cluster production

S. Hudan et al., PRC71, 05402 (2006)
Dynamical Breakup

Observation of **strongly aligned decay** in mid-peripheral collisions at intermediate energies with:

* Large yield
* Large relative velocity relative to fission

McIntosh *et al.*, PRC**81**, 034603 (2010)

From Colin *et al.*

- Transiently deformed nuclei
- Early cluster production

What is the isotopic composition of those fragments?

McIntosh *et al.*, PRC**81**, 034603 (2010)

From Colin *et al.*

- Transiently deformed nuclei
- Early cluster production

What is the isotopic composition of those fragments?
Experimental Setup

$^{124(,136)} \text{Xe} + ^{112, 124} \text{Sn} @ 49.2 \text{ MeV/A}$

Experiment performed at GANIL (France)

<table>
<thead>
<tr>
<th></th>
<th>^{124}Xe</th>
<th>^{124}Sn</th>
<th>^{112}Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/Z</td>
<td>1.30</td>
<td>1.48</td>
<td>1.24</td>
</tr>
</tbody>
</table>

FIRST: T. Paduszynski et al., NIMA 547, 464 (2005)
Experimental Setup

$^{124(,136)}$Xe + $^{112, 124}$Sn @ 49.2 MeV/A

Experiment performed at GANIL (France)

<table>
<thead>
<tr>
<th></th>
<th>124Xe</th>
<th>124Sn</th>
<th>112Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/Z</td>
<td>1.30</td>
<td>1.48</td>
<td>1.24</td>
</tr>
</tbody>
</table>

First: T. Paduszynski et al., NIMA 547, 464 (2005)
Experimental Setup

$^{124(,136)}\text{Xe} + ^{112, 124}\text{Sn} @ 49.2 \text{ MeV/A}$

Experiment performed at GANIL (France)

- $T1$: Si-Si-CsI(Tl)
 - $2.8^\circ \leq \theta_{\text{Lab}} \leq 6.6^\circ$
 - $Z = 1-55; A$ for $Z = 1-14$

<table>
<thead>
<tr>
<th>N/Z</th>
<th>^{124}Xe</th>
<th>^{124}Sn</th>
<th>^{112}Sn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.30</td>
<td>1.48</td>
<td>1.24</td>
</tr>
</tbody>
</table>

FIRST: T. Paduszynski et al., NIMA 547, 464 (2005)
Experimental Setup

\[^{124,136}\text{Xe} + ^{112,124}\text{Sn} @ 49.2 \text{ MeV/A} \]

Experiment performed at GANIL (France)

- T1: Si-Si-CsI(Tl)
 - \(2.8^\circ \leq \theta_{\text{Lab}} \leq 6.6^\circ \)
 - \(Z = 1-55; A \) for \(Z = 1-14 \)
- T2: Si-CsI(Tl)
 - \(7.3^\circ \leq \theta_{\text{Lab}} \leq 14.3^\circ \)
 - \(Z = 1-24; A \) for \(Z = 1-8 \)

N/Z

<table>
<thead>
<tr>
<th></th>
<th>(^{124}\text{Xe})</th>
<th>(^{124}\text{Sn})</th>
<th>(^{112}\text{Sn})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.30</td>
<td>1.48</td>
<td>1.24</td>
<td></td>
</tr>
</tbody>
</table>

FIRST: T. Paduszynski et al., NIMA 547, 464 (2005)
Experimental Setup

\[^{124,(136)}\text{Xe} + ^{112, 124}\text{Sn} @ 49.2 \text{ MeV/A} \]

Experiment performed at GANIL (France)

- **T1: Si-Si-CsI(Tl)**
 - \[2.8^\circ \leq \theta_{\text{Lab}} \leq 6.6^\circ\]
 - \[Z = 1-55; A \text{ for } Z = 1-14\]
- **T2: Si-CsI(Tl)**
 - \[7.3^\circ \leq \theta_{\text{Lab}} \leq 14.3^\circ\]
 - \[Z = 1-24; A \text{ for } Z = 1-8\]
- **LASSA: 36.4^\circ \leq \theta_{\text{Lab}} \leq 51.5^\circ**
- **DEMON: n TOF**

Table: N/Z

<table>
<thead>
<tr>
<th></th>
<th>(^{124}\text{Xe})</th>
<th>(^{124}\text{Sn})</th>
<th>(^{112}\text{Sn})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.30</td>
<td>1.48</td>
<td>1.24</td>
</tr>
</tbody>
</table>

FIRST: T. Paduszynski et al., NIMA 547, 464 (2005)
Aligned Decay

Angle between the relative velocity and the fragment “parent” velocity
Aligned Decay

- Asymmetric angular distributions
- Larger asymmetry for lighter Z_L
- Asymmetry persists up to $Z_L = 18$
- Similar yield for n-rich target

Angle between the relative velocity and the fragment “parent” velocity

$\cos(\alpha)$

$Z_L = 4$
112^{Sn}
$Z_L = 6$
124^{Sn}

$Z_L = 8$
$Z_L = 14$

$_{\text{c.m.}}$
\vec{V}_{REL}

*: Backward enhancement observed in Sn+Ni for change of target and projectile

P. Russotto *et al.*, PRC 81, 064605 (2010)
Isotopic Composition vs Rotation Angle

• Backward emission neutron-rich relative to forward emission
• Fragment neutron content enhanced for larger alignment
• No visible target effect of the relative neutron composition
Relative Velocity Dependence

- $Z_L = 4$
- $Z_L = 5$
- $Z_L = 6$
- $Z_L = 8$

$\langle N/N \rangle$ vs. $v_{REL} (\text{cm/ns})$

- 0°-37°
- 37°-66°
- 66°-90°
- 90°-180°
Relative Velocity Dependence

- $\langle N \rangle / Z$ decreases with v_{REL} for forward decay (Coulomb effect)
- $\langle N \rangle / Z$ increases with v_{REL} for backward decay
Relative Velocity Dependence

- $\langle N \rangle / Z$ decreases with v_{REL} for forward decay (Coulomb effect)
- $\langle N \rangle / Z$ increases with v_{REL} for backward decay
- All backward decays show the same dependence with v_{REL}
Relative Velocity Dependence

- $\langle N \rangle / Z$ decreases with v_{REL} for forward decay (Coulomb effect)
- $\langle N \rangle / Z$ increases with v_{REL} for backward decay
- All backward decays show the same dependence with v_{REL}

More aligned decay with higher v_{REL} ⇒ observed angular dependence
Time Extraction

t = 0
Time Extraction

- The rotation angle can be related to time via the rotational frequency ω:

$$t = \frac{\alpha}{\omega}$$
Time Extraction

- The rotation angle can be related to time via the rotational frequency ω:

$$t = \frac{\alpha}{\omega}$$
Time Extraction

• The rotation angle can be related to time via the rotational frequency \(\omega \):

\[
t = \frac{\alpha}{\omega}
\]

• \(\omega \) in the range 0.7-0.6 \(10^{21} \) rad/s corresponding to \(\ell \approx 40 \hbar \) based on previous studies*.

*: G. Casini et al., PRL 71, 2567 (1993)
The rotation angle can be related to time via the rotational frequency ω:

$$t = \frac{\alpha}{\omega}$$

ω in the range $0.7 - 0.6 \times 10^{21}$ rad/s corresponding to $\ell \approx 40\hbar$ based on previous studies. The correlation between $\langle v_{\text{REL}} \rangle$ and the rotation angle is monotonous (5th degree polynom parametrization).
Time Extraction

- The rotation angle can be related to time via the rotational frequency ω:

$$t = \frac{\alpha}{\omega}$$

- ω in the range $0.7-0.6 \times 10^{21}$ rad/s corresponding to $\ell \approx 40\hbar$ based on previous studies*.

- The correlation between $\langle v_{REL} \rangle$ and the rotation angle is monotonous (5th degree polynom parametrization).

$$v_{REL} \Rightarrow \text{angle} \Rightarrow \text{time}$$

*: G. Casini et al., PRL 71, 2567 (1993)
N/Z Time Dependence

\[\langle N \rangle / \langle Z \rangle = \begin{cases} 1.3 & Z_L = 4 \\ 1.22 & Z_L = 5 \\ 1.21 & Z_L = 6 \\ 1.12 & Z_L = 8 \end{cases} \]

- 0°-37°
- 66°-90°
- 37°-66°

1 zs = 10^{-21} s
N/Z Time Dependence

- $Z_L = 4$
- Strong time dependence
- Two components

$1 \text{zs} = 10^{-21} \text{s}$
N/Z Time Dependence

- $Z_L = 4$
 - Strong time dependence
 - Two components
- $Z_L = 5, 6$
 - Time dependence not as pronounced as for $Z_L = 4$
N/Z Time Dependence

- **$Z_L = 4$**
 - Strong time dependence
 - Two components

- **$Z_L = 5, 6$**
 - Time dependence not as pronounced as for $Z_L = 4$

- **$Z_L = 8$**
 - Similar dependence for both short and long times
Conclusions
Conclusions

- The $\langle N \rangle/Z$ of fragments emitted in dynamical decay is correlated with the rotation angle.
- Different v_{REL} dependence are observed for forward and backward emission.
- For backward decays, $\langle N \rangle/Z$ increases with v_{REL} with a similar magnitude for all angles.
- Evolution of $\langle N \rangle/Z$ over 2-3 zs (600-900 fm/c)
Conclusions

- The $\langle N \rangle/Z$ of fragments emitted in dynamical decay is correlated with the rotation angle.
- Different v_{REL} dependence are observed for forward and backward emission.
- For backward decays, $\langle N \rangle/Z$ increases with v_{REL} with a similar magnitude for all angles.
- Evolution of $\langle N \rangle/Z$ over 2-3 zs (600-900 fm/c)

- Difference in $\langle N \rangle/Z$ time dependence for different ZL may be related to differences in the initial di-nuclear configuration (different position relative to saddle and scission points).
- In the future, use of damped reactions at radioactive beam facilities?
Collaboration and Acknowledgements

- Indiana University: A.B. McIntosh, S. Hudan, J. Black, D. Mercier, C.J. Metelko, R. Yanez, R.T. de Souza
- GANIL: A. Chbihi
- GSI: S. Bianchin, C. Schwarz, W. Trautmann
- Université Laval, Québec: M.O. Frégeau, J. Gauthier, J. Moisan, R. Roy
- WMU: M. Famiano

Thanks to:
- The support of the GANIL staff and facility
- The DEMON collaboration

This work was supported by the DOE Office of Science under the Grant No. DEFG02-88ER-40404