Sub-barrier fusion cross-sections for neutron-rich oxygen and carbon nuclei

Indiana University, ORNL, University of Rochester, Western Michigan University, GANIL

1. Astrophysics: Neutron star crusts (pycnonuclear fusion, X-ray superbursts)
2. Nuclear Physics: Structure of neutron-rich nuclei and fusion dynamics

DATA SCARCE

Thermonuclear fusion vs pycnonuclear fusion
Why might neutron-rich nuclei show an enhanced likelihood for fusion?

1. Extrapolation necessary both in neutron number (N) and energy (independent)!

2. At 5 x 10^8K Gamow peak ~ 3.1 MeV for $^{24}\text{O} + ^{24}\text{O}$ and ~ 2.7 MeV for $^{16}\text{O} + ^{16}\text{O}$

3. 1/e width of Gamow peak ~ 1 MeV.
To access the relevant region we need $E_{\text{lab}}/A = 1$ to 3 MeV for the neutron-rich oxygen beam.

$$^{20}\text{O} + ^{12}\text{C} \rightarrow ^{32}\text{Si}^* \ (E^* \sim 50 \text{ MeV})$$

$$^{32}\text{Si}^* \rightarrow ^{29}\text{Si} + 3\text{n}$$

$$^{32}\text{Si}^* \rightarrow ^{29}\text{Al} + p + 2\text{n}$$

$$^{32}\text{Si}^* \rightarrow ^{26}\text{Mg} + \alpha + 2\text{n}$$
Experimental Setup of E575S

- Degrade in active gas cell to efficiently change energy for excitation function.
- Measure velocity after degrading (TOF) : $\frac{\delta E}{E} = 200 \text{ keV}/20 \text{ MeV}$
- Evaporation residues (ER) detected in Si detectors (angular distribution)

20O + 12C \rightarrow 32Si* ($E^* \sim 50 \text{ MeV}$)
Stage 1: Active degrader -- Multi-anode ionization chamber

- standard parallel plate design with Frisch grid
- thin window design with support wires for minimal bowing
- active region 8.8 cm long (6 anodes)
- CF$_4$ gas : P = 30 – 150 torr
- $E_{\text{deposit}} = 8$–40 MeV

- Need to characterize det. performance
- Measure magnitude of divergence/multiple scattering

Also useful for tagging/rejecting beam contaminants (e.g. fluorine) from 20O beam
Stage 2: MCPs for Energy determination after degrading

- TOF of 6 ns correct for 5 MeV α
- Time resolution of ≤300 ps (w/o optimization)
Stage 3: Separating evaporation residues from elastic 20O

Calculations based on assumption of fusion evaporation (PACE) and Rutherford scattering (LISE++)

At higher energies, residues are distinguished on the basis of energy alone.

At lower incident energies, residues are distinguished on the basis of both energy and TOF. A time resolution of \leq1ns is necessary.
Stage 3: Residue detection : Annular segmented Si detectors

- Annular Si det. From Micron Semiconductor
- 16 “pies” (φ) on ohmic side
- either 48 (S2) or 16 (S1) “rings” (θ) junction side
- Good angular resolution:
 - $\Delta \theta \approx 0.05^\circ$ for $1.1^\circ \leq \theta \leq 3.5^\circ$
 - $\Delta \theta \approx 0.17^\circ$ for $3.8^\circ \leq \theta \leq 12.1^\circ$
 - $\Delta \theta \approx 0.73^\circ$ for $12.6^\circ \leq \theta \leq 24.2^\circ$
- Good energy resolution
Beam test: Hope College Apr. ‘09 (Thanks to G. Peaslee and P. deYoung)

^{16}O at 6.8 MeV (elastically scattered from a Cu foil)

Rise time: 7 – 8 ns for oxygen same as 6 MeV α particles.

Simultaneous measurement of slow signals – good energy resolution 0.5%.
Accomplishments

• MCP TOF system exhibits the necessary resolution $\delta t \sim 250$ ps
• 5.1 MeV 16O is clearly detectable in the Si detector
• Rise time for 5.1 MeV 16O fast signals was 7-8 ns $\Rightarrow \delta t \sim 750$ ps

Outlook

➢ Measure divergence of beam when degraded (May 10-11 @ ORNL)
➢ Characterize performance of segmented IC (sources + beams)
➢ Understand distribution of fast pulse shapes for a fixed Z,A, and E.
➢ Measure TOF of alpha between MCP and Si detector
➢ Investigate need for position sensitive MCPs and tracking
Acknowledgements

Indiana University
Z. Gosser
M.J. Rudolph
B. Floyd
S. Hudan
A.B. McIntosh
H. Dussan
C.J. Horowitz

Univ. of Rochester
I. Pawelczak
M. Quinlan
Y.T. Tsai
W.U. Schroeder
J. Toke

GANIL
A. Chbihi and J.P. Wieleczko

Western Michigan Univ.
M. Famiano

ORNL
C. Gross
F. Liang
D. Shapira
R. Varner
Experimental observations: X-ray bursters vs Superbursters

Superbursts are thought to arise from the ignition of the “ashes” of bursts i.e. fusion of carbon.

Problem: At the temperature of the crust, the Coulomb barrier is too high for thermonuclear fusion of carbon – another heat source is needed.

Thermonuclear X-ray bursts and the rp-process

Andrew Cumming
McGill University