Measuring the fusion cross-section of 39,47K + 28Si at near-barrier energies

Justin Vadas, V. Singh, B. Wiggins, J. Huston, S. Hudan, R.T. de Souza; Indiana University Bloomington

A. Chbihi, D. Ackermann; GANIL

M. Famiano; Western Michigan University

K. Brown; Michigan State University

DOE under Grant No. DE-FG02-88ER-40404

NSF under Grant No. 1342962
• An X-ray superburst, which occurs in the outer crust of an accreting neutron star, releases more energy in a few hours than the sun does in a decade
• Fusion of light and mid-mass neutron-rich nuclei has been proposed as being responsible for triggering X-ray superbursts
• Measurement of an isotopic chain provides information on how structure and dynamics evolve with increasing neutron number
• 39,47K + 28Si allows for exploring the effect of a large span in neutron number on fusion
The Reaction and its Products

\[^{47}K + ^{28}Si \rightarrow ^{75}As^* \rightarrow ^{73}As + 2n \rightarrow ^{73}Ge + p + n \rightarrow ^{70}Ga + \alpha + n \]

- Excited compound nucleus decays by emitting protons, neutrons, and particles
- The resulting heavy nucleus is known as an evaporation residue
- Emission of these light particles impart transverse momentum on the residue, kicking them off zero degrees and allowing for direct measurement of the residues and light particles
• Primary beam accelerated by two coupled cyclotrons
• Rare isotope beam (RIB) produced via fragmentation and separated by A1900 fragment separator
• Beam significantly slowed down in a linear gas stopper
• Beam ionized to high N+ charge state in charge breeder
• RIB is re-accelerated to desired energy and delivered to the experimental area
Challenges experienced with ReA3

- Timing structure of the beam
 - Beam leaves the charge breeder in macrobursts every 500 ms (2 Hz)
 - The ions are bunched into the first \sim100 ms of each macroburst
 - Instantaneous rate experienced by detectors: \sim5x higher than the average rate

- Contamination in RIBs
 - Particle identification is required on an event-by-event basis
 - Need detector with good energy resolution and high rate capability
Rare Ion Purity Detector (RIPD)

- Axial field design with central anode minimizes charge collection time
- Aluminized windows serve as cathodes (0.5 µm)
- Utilize CF$_4$ as detector gas based upon its high electron drift velocity
- Integrated fast charge sensitive amplifier
- Energy resolution \sim8% above 5 MeV
- Resolution \sim10% at an instantaneous rate of 1×10^5 ions/s

J. Vadas, et al., NIMA 837 (2016) 28
\[^{39,47}\text{K} + ^{28}\text{Si} \rightarrow ^{67,75}\text{As}^* \]

- \(E_{\text{lab}} = 2.3 – 3 \text{ MeV/A} \)
- Average intensity \(\sim 10^4 \text{ p/s} \)
- Reaction products distinguished by ETOF
- Energy measured in segmented annular silicon detectors (T1, T2) \(1^\circ \leq \theta_{\text{lab}} \leq 7.3^\circ \)
- Fusion product time-of-flight measured between target MCP and silicon detectors

- \(^{47}\text{K}\) beam contaminated by \(^{36}\text{Ar}\) (~5%)
- Particle identification performed using \(\Delta E-\text{TOF} \)
- \(\Delta E \) measured in RIPD
- TOF measured between two MCP detectors
Measuring evaporation residues

• Evaporation residues identified using E-TOF are integrated (N_{ER}).
• The number of incident beam particles are counted with the two MCP timing detectors (N_{Beam}).
• Efficiency correction for detector geometric coverage (ε_{ER}).
• Target thickness determined by measuring energy loss of α particles from ^{148}Gd and ^{241}Am sources (t).
• Target:
 • Isotopically enriched ^{28}Si
 • Thickness = 442 µg/cm²
 • Provided by Legnaro National Laboratory

\[\sigma_{fusion} = \frac{N_{ER}}{N_{Beam} t \varepsilon_{ER}} \]
First measurements of $^{39,47}\text{K} + ^{28}\text{Si}$

- ^{39}K: ~500 mb to ~3 mb
- ^{47}K: ~300 mb to ~15 mb

At high E_{CM}, ^{47}K is about equal to ^{39}K

Below the barrier, ^{47}K is enhanced relative to ^{39}K

Ratio reaches a factor of 7 at the lowest energy measured

<table>
<thead>
<tr>
<th>Reaction</th>
<th>V_C (MeV)</th>
<th>R_C (fm)</th>
<th>$\hbar\omega$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{39}\text{K} + ^{28}\text{Si}$</td>
<td>37.29 ± 0.26</td>
<td>8.27 ± 0.24</td>
<td>4.89 ± 0.63</td>
</tr>
<tr>
<td>$^{47}\text{K} + ^{28}\text{Si}$</td>
<td>37.35 ± 1.42</td>
<td>8.37 ± 1.32</td>
<td>9.26 ± 2.68</td>
</tr>
</tbody>
</table>
Conclusions/Outlook

Summary

• The fusion cross-section for $^{39,47}\text{K} + ^{28}\text{Si}$ has been measured for the first time using the ReA3 facility at NSCL
• A significant enhancement of the cross-section is observed for ^{47}K relative to ^{39}K near the barrier

In the future:

• Finalize cross-section for $^{39,47}\text{K} + ^{28}\text{Si}$ and compare with theoretical models
• $^{36,44}\text{Ar} + ^{28}\text{Si}$ at NSCL ReA3
• $^{20,21}\text{O} + ^{12}\text{C}$ at GANIL (E739), possibly ^{22}O (LOI)
• $^{18,19}\text{O} + ^{18}\text{O}$ at FSU
Additional Material