Fusion excitation measurement for $^{20}\text{O} + ^{12}\text{C}$ at $E/A = 1\text{-}2 \text{ MeV}$

Indiana University

GANIL
A. Chbihi, B. Jacquot

ORNL
J.F. Liang, D. Shapira

Western Michigan University
M. Famiano

This work was supported by the U.S. DOE Office of Science under Grant No. DEFG02-88ER-40404
Motivation

The crust of an accreting neutron star is a unique environment for nuclear reactions.

Fusion reactions in the outer crust result in X-ray bursts and superbursts.

Problem: At the temperature of the crust, the Coulomb barrier is too high for thermonuclear fusion of carbon – another heat source is needed.
Is fusion of neutron-rich light nuclei enhanced relative to β-stable nuclei?

Neutron transfer channels for N/Z asymmetric nuclei enhance the fusion cross-section at and below the barrier.

V. Oberacker, Th 5:30 pm Session 25
Fusion of neutron-rich radioactive beams with light targets

\[^{20}\text{O} + ^{12}\text{C} \rightarrow ^{32}\text{Si}^* \quad (E^* \sim 50 \text{ MeV}) \]

\[^{32}\text{Si}^* \rightarrow ^{29}\text{Si} + 3\text{n} \]
\[^{32}\text{Si}^* \rightarrow ^{29}\text{Al} + \text{p} + 2\text{n} \]
\[^{32}\text{Si}^* \rightarrow ^{26}\text{Mg} + \alpha + 2\text{n} \]

Energy and angular distributions predicted by Bass model + PACE2
Incident Beam: $^{20,16}\text{O} + ^{12}\text{C}$ @ 3 MeV/A

Intensity of ^{20}O: 1-2x104 pps

Degrader ion chamber (CF$_4$) reduces energy to 1-2 MeV/A and identifies particle (ΔE)

Target: 100 μg/cm2 carbon foil

T2: $\theta_{\text{Lab}} = 3.5 - 10.8^\circ$; T3: $\theta_{\text{Lab}} = 11.3 - 21.8^\circ$

Time-of-Flight (TOF) between target-MCP and Si (T2, T3)
Experimental Setup: GANIL E575S (Summer 2010)

- Incident Beam: 20O 12C @ 3 MeV/A
- Intensity of 20O: 1-2x104 pps
- Degrader ion chamber (CF$_4$) reduces energy to 1-2 MeV/A and identifies particle (ΔE)
- Target: 100 μg/cm2 carbon foil
- T2: $\theta_{Lab} = 3.5 - 10.8^\circ$; T3: $\theta_{Lab} = 11.3 - 21.8^\circ$
- Time-of-Flight (TOF) between target-MCP and Si (T2, T3)
Experimental Details

Microchannel plate detector

- Inner hole 20 mm diameter
- 48 concentric rings; 16 “pies”
- Particle entry on ring (junction)
- Fast timing extracted from “pie” side
- Time resolution 425 ps (6 MeV alpha)

Advantages:
- compact
- Simple construction
- good time resolution (200 ps)

Disadvantages:
- Wire planes (4/det.) in path of beam

Silicon detectors

- R.T. deSouza et al., NIM. A632, 133 (2011)
Energy-TOF spectrum has many features

- Slit-scatter ridge extending from elastic peak to lower energies (expected)
- Incomplete charge collection ridge (same TOF as elastic); \(~20\%\) of elastic yield!
- “ghost” line in same region as residues but x-section \(~70\text{b}!\) (atomic process)

Require charged particle coincidence to eliminate atomic scattering background

select coincidence of charged particle \((p, \alpha)\) in T3 with a residue in T2

Fusion-evaporation model (evapOR)

1. Fusion stage: Bass model
2. Evaporation stage

Measured cross-section exceeds that predicted by fusion-evaporation model

- Is $\sigma_{\text{fusion}} > \sigma_{\text{Bass}}$?
- Does evapOR handle competition between CP and neutron only decay correctly?

Benchmark reaction: $^{16}\text{O} + ^{12}\text{C}$

- Measurement made in same expt. (E575S)
- Measurement subsequently at WMU
- Measured cross-section in both expts. is in good agreement with evapOR predictions

\[
^{16}\text{O} + ^{12}\text{C} \rightarrow ^{28}\text{Si}^* \rightarrow
\]

<table>
<thead>
<tr>
<th>Product</th>
<th>Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{27}\text{Si} + n$</td>
<td></td>
</tr>
<tr>
<td>$^{27}\text{Al} + p$</td>
<td></td>
</tr>
<tr>
<td>$^{26}\text{Al} + p + n$</td>
<td></td>
</tr>
<tr>
<td>$^{26}\text{Mg} + 2p$</td>
<td></td>
</tr>
<tr>
<td>$^{24}\text{Mg} + \alpha$</td>
<td></td>
</tr>
<tr>
<td>$^{23}\text{Na} + \alpha + p$</td>
<td></td>
</tr>
<tr>
<td>$^{20}\text{Ne} + 2\alpha$</td>
<td></td>
</tr>
</tbody>
</table>
Origin of ghost line

“Ghost” line is due to electrons from carbon foil directly entering the MCP
The path forward: Decreased segmentation of the Si detector

- Si SBD fast rise time 3-4 ns
- MCP rise time < 2 ns
- Leading edge disc. of Si signal
- CFD disc. of MCP signal

\[\alpha \text{ source (}^{226}\text{Ra)}\]
The path forward: Development of a gridless MCP

Crossed E and B field design:

Time resolution for a single MCP ~ 350 ps
More than sufficient for measurement
Conclusions

- Extraction of fusion cross-section for $^{20}\text{O} + ^{12}\text{C}$ followed by charged particle emission
- Measured cross-section for these channels is larger than that predicted by evapOR. Two possibilities:
 - Increased overall cross-section as compared to Bass
 - Competition between charged particle emission and neutron only decay in de-excitation phase differs from evapOR prediction (which agrees for $^{16}\text{O} + ^{12}\text{C}$)
- Implementation of a gridless MCP reduces slit scattering
- Low segmentation silicon is needed to avoid incomplete charge collection

- Verify technique by re-measuring σ_{fusion} for $^{16}\text{O} + ^{12}\text{C}$
- Measure fusion excitation functions for neutron-rich light nuclei