Accreting Neutron Stars

- The outer crust of an accreting neutron star is an unique environment for nuclear reactions
- Identified as the origin of energetic X-ray superbursts (~ 10^{42} ergs per burst)
- X-ray superbursts thought to be fueled by 12C + 12C fusion in the outer crust
- Temperature of the outer crust is too low (~ 3×10^6 K) for 12C fusion

Haensel et al., Neutron Stars 1, 2007
One potential heat source, proposed to heat the crust of neutron stars and allow 12C fusion, is the fusion of neutron-rich light nuclei (ex. 24O + 24O).

24O + 24O Fusion:
- If valence neutrons are loosely coupled to the core, then polarization can result and fusion enhancement will occur.

- 24O is currently inaccessible for reaction studies.
- Instead study other neutron rich isotopes of oxygen (18,19,20O) on 12C (19,20O are radioactive).

State of the art theoretical calculations predict fusion dynamics for neutron-rich light systems.

Experimental measurements of the fusion cross-section provides a test of fusion models.

What do we want to measure?

- Excited nucleus decays:

 \[^{30}\text{Si}^* \rightarrow ^{28}\text{Si} + 2n \]
 \[^{28}\text{Al} + p + n \]
 \[^{25}\text{Mg} + \alpha + n \]

- To measure the fusion cross-section we need to count the number of evaporation residues relative to the number of incident O nuclei.

- Emission of evaporated particles kicks evaporation residues off of zero degrees.
Method for Identifying Evaporation Residues

 cháu To distinguish fusion residues from beam particles, one needs to measure:

- Energy of the particle
- Time of flight of the particle

- **^{18}O beam was provided by the Tandem van de Graaff accelerator at Florida State University (Feb. 2014)**

- **$^{18}\text{O} @ E_{\text{lab}} = 16 – 36 \text{ MeV}$**
 - $I_{\text{Beam}} \sim 1 - 4.5 \times 10^5 \text{ p/s}$

Wiedenhover et al., (5th Int. Conf. on Fission & Prop. of Neutron-rich Nuclei, 2012)

www.physics.fsu.edu/Nuclear/Brochures/SuperconductingLinearAcceleratorLaboratory/default.htm
Time of flight of beam measured between US and Tgt gridless MCP detector

Elastically scattered beam particles and evaporation residues:
 - Time of flight measured between Tgt MCP and Si detectors
 - Energy measured in annular Si detectors (T2, T3)

7 CsI(Tl)/photodiode detectors used to measure light charged particles

PMT (coupled to plastic scintillator) measures zero degree beam particles
Gridless MCP Detector

✧ Minimize extraneous material in the beam path
✧ Crossed electric and magnetic field transports electrons from secondary emission foil to the microchannel plate (MCP)
✧ 20 neodymium permanent magnets produce magnetic field (~85 gauss)
✧ 6 grid plates produce electric field (~101,000 V/m)
✧ C foil frame biased to -1000 V
✧ MCP with 18 mm diameter

Bowman et al., Nucl. Inst. and Meth. 148, 503 (1978)
Steinbach et al., Nucl. Inst. and Meth. A 743, 5 (2014)
Si Detector

✧ New design (S5) from Micron Semiconductor Ltd.
✧ Single crystal of n-type Si
 ~ 300 µm thick
✧ Segmented to provide angular resolution
✧ Used to give both energy and time information

<table>
<thead>
<tr>
<th>S5 (T2) Si Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pies</td>
<td>16</td>
</tr>
<tr>
<td>Rings</td>
<td>6</td>
</tr>
<tr>
<td>Inter-strip width</td>
<td>50 µm</td>
</tr>
<tr>
<td>Entrance widow thickness</td>
<td>0.1-0.2 µm</td>
</tr>
</tbody>
</table>

✧ Fast timing electronics gives timing resolution of ~ 450 ps
 (Need ~ 1 ns time resolution)

www.micronsemiconductor.co.uk
Steinbach et al., Nucl. Inst. and Meth. A 743, 5 (2014)
deSouza et. al., Nucl. Inst. and Meth. A 632, 133 (2011)
Identifying Evaporation Residues

$^{18}\text{O} + ^{12}\text{C} \rightarrow E_{\text{Lab}} = 35 \text{ MeV}$

Elastic scattering peak

Fusion residues

Slit Scattering

PRELIMINARY
Identifying Evaporation Residues

$^{18}\text{O} + ^{12}\text{C} @ E_{\text{Lab}} = 35 \text{ MeV}$

$^{20}\text{O} + ^{12}\text{C} @ E_{\text{Lab}} = 41 \text{ MeV} @ \text{GANIL (France)}$

Rudolph, Master’s Thesis, IU, 2012

Tracy K. Steinbach
April 5, 2014
✧ Measured the cross section for $E_{\text{CM}} \sim 6 - 14$ MeV

✧ Capable of measuring to approx. the 10 mb level

✧ Next measurement: 19O + 12C @ FSU
Acknowledgements

✧ Indiana University Nuclear Chemistry:
 R.T. deSouza, S. Hudan, M. Rudolph, Z. Gosser, J. Vadas,
 C. Haycraft, K. Brown, J. Schmidt, A. Liao

✧ Florida State University:
 I. Wiedenhover, L. Baby, J. Baker, J. Baron, J. Belarge,
 R. Dungan, S. Kuvin, D. McPherson, J. Parker, N. Rijal,
 P.L. Tai, K. Villafana, J. VonMoss

✧ Indiana University Department of Chemistry:
 Mechanical Instrument Services and
 Electronic Instrument Services

✧ DOE under Grant No. DEFG02-88ER-40404
Additional Material
Si Detector Design

- Reduced segmentation and inter-strip width
 - Charge trapping reduced from a 20-30% effect to a 1-2% effect

- Reduced entrance window thickness
 - Beneficial for low energy heavy residues

<table>
<thead>
<tr>
<th></th>
<th>New Si Design</th>
<th>Old Si Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pies</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Rings</td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>24 ring segments</td>
<td></td>
</tr>
<tr>
<td>Inter-strip width</td>
<td>50 µm</td>
<td>100 µm</td>
</tr>
<tr>
<td>Entrance widow thickness</td>
<td>0.1-0.2 µm</td>
<td>~ 0.7 µm</td>
</tr>
</tbody>
</table>

Steinbach *et al.*, Nucl. Inst. and Meth. A 743, 5 (2014)